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Abstract. In this note we discuss harmonic mapsinto periodic flag manifolds
and into Loop groups. We also discuss the stability of somemapscalled Eells-
Wood-Uhienbeckinto suchmanifolds.

§ 1. INTRODUCTION

Due to the enormousdifficulties involving Gaugetheories in 4 dimensions,
considerableattention has beengiven to 2-dimensionalsigmamodels(harmonic
maps!) which is hoped to share some of the importantqualitative properties

of the 4 dimensionaltheory.
It is well-known that both functionalshave several common features.For

example:they are conformally invariant when the dimensionn of the domain

manifold is 2 in the caseof the energy functionaland n = 4 for the Yang-Mills
functional. They also have similar compaticity theoremslike Sacks-Uhienbeck
[26] andUhienbeck’sresultscontainedin [28] and [29].

They also havespecialsolutions(instantons)which are ±- holomorphicmaps
(when the metrics are Kãhler) for the energy functional and (anti)—self—dual

connectionsfor the Yang-Mills funcitonal. FurhtermoreAtiyah [3] andDonald-
son[12] haveshown that the instantonsin both theoriescanbenaturallyidenti-

fied. The rough idea of this identification is: Ward and Penrosehaveshown
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that instantonson S4 are in natural 1 — 1 correspondencewith holomorphic

bundles over ~LP3.But Donaldson in [12] has shown that such holomorphic
bundlesover ffP3 are in natural 1 1 correspondencewith holomorphicbundles

over (tP2 plus some extra technical condition. On the other hand,Atiyah in

[3] has shown that holomorphicbundles over ~LP2plus the extra condition
are in 1 -~ 1 corre~pondencewith holomorphic bundlesover ~.P1x ~P’ plus a

similar extra condition found by Donaldson.But holomorphic bundles over
x tIP’ plus the extratechnicalcoi~ditionare in 1 1 correspondencewith

holomorphicmapsf : S2 —~ cMG). We can summarizethis discussioninto the

following diagram
Ward . 3

instantonson S4 ~+ holomorphic bundles over tIP
Penrose (if we considerthe Penrosefibration

S2...~tIP3~S4)

~ Donaldsonholomorphic bundles

over tIP2 +

t Atiyah holomorphic bundles
overtIP’ x +

holomorphicmapsf:S2-*~2(G)~÷

A basic variational problem for the Yang-Millsfunctional is the classification

of all Yang-Mills connectionson a compact4-dimensional manifold in terms

of instantonssolutions.Quite recently L. Sibner, R. Sibner and K. Uhlenbeck
[271 have announcedthe existenceof an infinite numberof Yang-Mills connec-

tions over an SU(2)-bundleon S4 that are not a local minimum for the Yang-
Mills functional, so they can not be instantonsaccording to [51.This theorem

may suggest a very strong difference between the vanatnnaiaspectsof the

energyand the Yang-Mills functionals.
Examplesof Yang-Mills connectionson ~2 x S2 are known are not instantons.

See [30] for more details. Before [27] all the non-instantonssolutions were

obtained in a more or less standardway via algebraicand geometricmethods.
We can translatethis variationalproblem to the energy functional level in the

following way: try to classify harmonic maps ~ : M2 —* (~l(U(n)),Kähler me-
tric) in terms of holomorphic maps0 : M2 —~ &2(U(n)). whereM2 is a compact
Riemann surface. For example it is a difficult and open problem to find

S2 (fMSU(2fl, Kãhler metric) harmonic but not holomorphic.We will
in this note prove some results that seem to indicate that both critical point
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theoriesarerelated.

In section 2 we discussthealmostcomplexstructureson ~2(G)and the natural

Kithler metric in the loop spaceandinto the periodicflag manifold.
In section 3 we compute the Euler-Lagrangeequationsfor harmonicmaps

from compactRiemannsurfacesinto periodic flag manifolds by using the geo-

metric approachsuggestedby Atiyah in [2], and derive some related results.
In section4 we define somebasicharmonicmapsinto periodicflag manifolds

which are a generalizationof the ones found by Eells and Wood in [13]. We
discussthe stability of suchmapswith respectto a largeclassof invariantmetrics
on ~ We provethe existenceof <<saddles>>in the space.

In section 5 we studyharmonicmapsfrom T
2 = S’ x S’ into FQ~which

are equivariantwith respectto a circle action.We canfind families of harmonic
maps that are not holomorphicwith respectto any almostcomplex structure

on
Finally, in the last sectionwe discussthe connectionof the former results

wih the study of harmonicmapsinto Loop groupsas in [22].

The previous results seemto indicate a close relationship among the set of

invariant metrics on ~2(U(n)) and the moduli spaceof U(n)-connectionson S4.
I am very grateful to F. Burstall for helpful comments.I also want to thank

the refereefor helpful comments.

§2. SOME REMARKS CONCERNING TO THE GEOMETRY OF ~(G)

We define the free group of loops L(U(n)) as the set of smoothmapsfrom

S1 to U(n), and ~Z(U(n)) as the subgroupof L(U(n)) formed of maps f such

thatf(l) = I.We will be talking in this paragraphabout~Z(U(n)).

The simplest case is when G = U(l). Then ~7(U(l)) hascomponentsindexed

according to the winding numberand each componentcan be identified with
the spaceof functionsf : S’ -* IR such that f( 1) = 0. The Fourierseriesof such

a function is ~ = a~Z~,a = ~, ~ an = 0, thereforethe coefficients

~ for n ~ 0 determine0 completely.Hence,eachcomponentof &Z(U(1)) be-
comesa complexvectorspaceof infinite dimension.

For non-abelian G, ~G) is not a vector spaceanymore.However, is still
is an infinite dimensionalmanifold and we can use Fourier seriesto introduce

complex coordinates.We known that ~Z(G)
1is equalto ~Mg) and can be re-

presentedin Fourier seriesas the set of functions ~ = ~ a~Z’
1,a_~ =

= — a,~,~ a~= 0 where a~E Ga. If G = U(m) thena~E tIm anda is the

transpose conjugate matrix. Furthermore, since cZ(U(m)) is equal to
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L(L(,n))/U(m). if we denoteby p the space~l(L!(m))1. then L(u(n~))= p + u(ni)

so if ~ E ~(U(,n))1 = ~2(u(~n)). 0 = ,, I a,, Z”. a~E u(m)~and a0 = 0. So

becomesan infinite dimensionalcomplexvector space.
Now, we can define several almostcomplex structureson f2(G), namely if

we definef(0)= I ~nV a~Z”,where~~= ± land~ = ~

The almostcomplexstructureobtainedby making a, = 1 V ii > 0 is integrable

and is called the canonical almost complex structure.Notice that the almost
complex structureobtainedby making a~,= (— 1)”. a > 0 is not integrable,

and there are some interesting resultsconcerningthis almostcomplex structure
(See [4] for more details).If we fix one almost complex structureI. we can

translateit for all tangentspaceshence(~2(G).J) becomesan almostcomplex
manifold of infinite dimension.

We also have an alternative and useful descriptionof the canonical Kähler

structureon ~2(G). To define a Hermitian metric on &Z(G) is again enough to
define it in ~l(G)1 and translateit via the group action. In section 3 we will

exhibit several natural invariant metricson ~2(G),but the mostnatural it seems

to be given with respect to the Fourier coefficientsby I ,7tr~a,,a~)where

a,: is regardedas a matrix. A reasonfor this metric being naturaland important

relies on the fact that it is Kähler. The symplectic form associatedis given by:

(0. 0) = j (0(0), 0(0)) do, whereK,

is given by the Killing form.

§3. HARMONIC MAPS INTO PERIODIC FLAG MANIFOLDS

In this paragraphwe will consider throughout the Hilbert space H<’~=

=L
2(S’ ,tI~).

3.1. DEFINITION. Let F~~”>be the set of(L~~ where L. is a I-dimensional

subspaceofH~’~,L~is perpendicularto L
1 if i ~=j and I L1 = H(ni).

Hencea map 0 : M
2 -+ F2~’~can be describedas 0 = (H

1)T1~with 111:M —*

F(H
t’~)where F(Ht’~) is the projectivespaceformedby lines in H”~. Further-

more,I1~~H
1,ll1fl10ifi~J[I7H~andIfl1I.
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From now on, we considerwithout mentioning the natural embeddingof

FQ~)into (3) F1(H~”~),givenby the fact that if FEF2~~thenF = (L~)~°—

where L1 are lines in H
t~~so ~ embeddsnaturally into ®

We will now describeFQ~”~in a algebraicfashion.We recall that eachelement

of H~’~= L2(S1,tI”) can be representedas ~ fkZ”, fk EtI”.I1(”~ always

decomposesas ~ ~ H~’~whereH~~)= { functionswhosenegativeFourier

coefficientsvanish} = {f E H~~1J~Z)= I fkZ”~with fr,. E (Ir} ~fEH~”~
k~’0

f is the boundaryvalue of a function holomorphic in ~ < 1 } and Ht() =

~ ~ ~
k<0

Now to introduce an orthogonal basis in H~”~we basically identify H~

with H = L2(S’, tI) with its naturalbasis(e’~k0 ~ Then,if we consider

the naturaltransitiveaction of L(U(n))on ~ and take the isotropysubgroup
at the flag ~“H~} which is a maximal torus T of U(n), we obtain that F2t”~=

= L(U(n))/T. See[24] for moredetails.

We also recall that any 0 : S1 —~L(u(n)) can be representedby Fourier series

as 0 = ~ akZ, a k = — a~whereak E u(n)a. From now on, we will
k=—”~

be using the fact that the coefficientsa~,for k ~s 0 determine~ completely.

Then, we can define the Killing form metric on L(u(n)) namely: if ~ 0 E

EL(u(n)) then (0, 0) = ~ tr(akb,~) where q = v akZ” and0 =

k~o ka_,,,,

= ~ bkZk. We begin the discussionconsideringF2~”~equippedwith the
k=—

naturalinducednormal Killing form metric.

We definethe energy ofamapØ:M2 -+FQ~as:E(~)~

( / ~H. 8H.\ /arl. aH.\
- I I (_L,L>+(~_L,_!)dxdy.
2 j0 JW \ aX ax / ~ a~ . a~/

Let q :M2 -÷ L(u(n)) and consider ~(x) = e tq(x) . - ~tq(x) Then
d

(oil.) (q) (x) = — ~(x) = [H~(x),q(x)].
dt t=o

3.2. PROPOSITION.Let ~ = (He) : M2 -+ FQ”’~be a smooth map, Then 4 is har-

monic if and only if ~‘ [~H., H,] = 0.
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‘an a an. a N

Proof (OE)(O~(q))= I J ~_L, — (oH1(q))>+~~,— (aH.(q)) ~
i M~ 3x ax a~ a) /

dxdy = I (( .—A111,[fl,, q])). But accordingto the cyclic propertyof the trace.

we see that (Cl. [B, C])) = (([B*, A], C)). Therefore. (bk) (00(q)) = -- I

(([H1. Am]. q)).

But ~ = (fl,)~: M
2 —~ F~”’~is harmonicif and only if it is a critical point of

theenergyfunctional;i.e. forany ~‘ariation0~(q)of~we musthave(OE)(0Ø(q))~0.
Henceif we apply Nöether’stheoremand the fundamentallemmaof the calculus

ofvariationsweseethat0 :M2 ...,.p~(n) isharmonicif andonly if I [Ail~. 11~]= 0.
i—U

Now let T. be the tautological line bundle over IP,(H. Then, we considerthe

trivial vector bundle~j2 x H~”3overM2. so each0*(T<) is a rankone subbundle

of 412 x ~ Let an, = be the covariant derivativeof H with
an.

respect to x andA~the projectionof ~1 ontoH~.We call the partial second

fundamentalfonns of 0 = (H.). : M2 F~”~the maps.4k’ = ~ ~=

In a similarway, we defineA”. See[21 or [211for moredetails.
Now if we think of M7 as a complexone-dimensionalmanifold,then we define

an. I an. an. an. 1 an. ——— an.
I = — —~——~ and = — ‘ +v-—1 ‘ .Wealso

aZ 2 ö.v av an az 2 a.\-
define.411=il. —+~ andA” =11. —~

Z , az Z az
Now let ~.i = z orz and

0 412 413
‘p P ‘p

121 0 423 ~

A”’ 4/:2 4??)
I P J

3.3. PROPOSITION (A) (A) = [A. .4] + [A. U,, where[.4~. .4. L
1

denotesthediagonalpart of the matri.v [A. .4~j.

Proof See[211.

Combining 3.2 and 3.3. Propositionswe can see that 0 = (fI,)~ : M .
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a a
is harmonicif and only if I ~ (A~’)+ ~ (Ak’) = 0. Therefore,we have

just proveda conservationlaw formula,which statesthatif~ = (IIi), : tIP
1 -+ ~

is harmonicthen 0 = tr(A) = tr(A 2) when~z= Z or Z.

On the otherhand:

1 n (
E(Ø) = V ) ~ =

- ~ M~

= V I !A”Z12 + — v ( A’112
2 — I 1 Vg s~ — ZIVg
— (i,j)ES + ~ (i,flES J~

where S~is a partition~of(IN x IN — D) whereD = {(k, k); k E IN} such that

if (i, /) E S~then (/, i) E S~,andS is the complementof S’~in (IN x IN — D).

We call S4’ a positive systemin iN.

Furthermore,we see that a map ~ = (H
1)1 : M

2 -÷ ~ is S~’-holomorphic

if andonly if thereexistsS~suchthatA~’= 0 V (i, j) E S~.

Let usgive a briefaccountabouta setof invariantmetricsonFQ~”~= L(U(n))/T.
We will denoteby p the tangentspaceof F~”~at (7’), soL(u(n)) = p ~ h.

3.4. PROPOSITION:a) Thesetof invariant metricsof F2~”~is naturally isomorphic

to tile set of scalar products K,> which are invariant undertheaction of Ad(T)

on L(U(n)). b) A scalar product K,) is invariant underAd(T) if and only if for

each v E h, ad(v) is skew-symmetricwith respectto K,) if andonly if([v, y], Z) =

= —Ky, [v,ZI) VZ,yEL(u(n))andvEh.

Proof: See [21] with the obvious modifications and use the fact that exp:

L(u(n)) -+ L(U(n)) is onto.

Now let ~ = a
0 + k~ akZ E FQ(~)wherea0 E F(n)(T) =

k+0
aJ, E u(n~aand a k = — a~= a~. Therefore the invariant inner products
on FQ~”~area combinationof the invariant innerproducts

+ a, a, + ~ , (see [16] for more details) with the following
inner productson p:

~ ~ktr(akbk),ak>O
k>0
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where0 = ~ U~Zk and0 = ~ b~ZA
k=’-~

k�U k+r)

In fact, let us recall the classof left-invariant metricson I-’~n = U(n)/T.See[18]

or [211 for more details, We have that Pin )( T = q whereala I = q + h, 1, being
the Lie algebra of T , Then if A, B are in q, we consider the inner product

(.1. Th = ~ trace(anE.AE.B*)wherea — I j
Ii

0 0

0

E. = i 1 0 a = (a”), a’
1 = a1’ > 0.

0

0 0,

If we restnct out almost complex structuresin Rn) to the integrableone

we can see that g,~
1~ ,aj + a 2. ,a -f + P~ give all the left-invariant

Kãhler metrics on F(n).

Now, if we consider compactible almost complex structuresin Fin) and

&‘l(U(n)) and alsoconsiderK~hlermetricson F(n) of the form

- ] ,a~+ a 2~ a] + + ap ~) and consider Kàihler metrics on

~Z(U(n))by making a1 = X> 0 a,, = nX for n >0, In this way we obtain
several Kähler metrics on F~J”~.The most natural Kähler metrics on J-Q(t~is

given by taking a1 = 1 for i = 1 a — I andX = 1. •

In fact whatwe aredoing is to put on F(n) the inducedmetric from thenatural

holomorphic and totally geodesicembedding of F(n) into ~2(U(n)) which we

will give moredetailsin § 7.

§4. EXAMPLES OF MAPS INTO F2~’~,~‘l(U(n)) AND A FORMULA FOR

THE SECOND VARIATION OF THE ENERGY FOR A HARMONIC MAP

0 :M
2 ±F~’~

We now study some basic examplesof harmonicmaps0 : M2 —* J~9~’)which
were found basically by Eells and Wood [3] in the fin) case and relate these

maps with the onesfound by Uhlenbeckin [28]. To someextent perhapsthese
maps are the only examples of harmonic maps into periodic flag manifolds

or Loop groupsgeneratedin an algebraicand geometricfashion.
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Let us recall the constructionof theEells-Woodmapsin thefinite dimensional
flag manifold case.See[181or [211for moredetails.

Let h : M
2 —~ tIP~ ~ be a full (non-degenerate)holomorphicmap. Then h

is given locally by u(Z) = [(u
0(Z) u,~ ~(Z))], so we define the k — th

associatedcurve of h called Uk by:
0k : M2 -÷ ~ , (tI”), whereak(Z) = span

{u(Z), u’(Z) u~’(Z)}.We can seethat Uk is well-defined.Then we consider
hk : M2 —~ tIP~ given by: hk(Z) = ak(Z) u 0k + I (Z). We havethe following

important theoremdueto Burns, Din, EElls, Glaser,Stora,WoodandZakarewski.

4.1. THEOREM. For each0 ~ k ~n — 1, hk :M2 ‘-÷tIP’1 ‘ is harmonic.Further-

more,given0 : tIP’ -+ lIP” -- harmonic,thenthereexistsauniquek, 0 ~ k c n —

and ii : tIP’ -÷ lIP” -‘ full andholomorphicsuch that 0 = “~k’

Therefore,we havecanonicalmaps 0 : V!2 -÷F(n) = U(n)/T calledEells-Wood
maps given by: 0(x) = (h

0(x),..., h 1(x)). We can seethat the Eells-Wood

mapsare holomorphicand harmonicwith respectto any invariantmetric defined
on F(n) in §3. MoreoverA~’= 0 unless i and! are consecutiveintegersbetween

1 andn.

If h : M
2 —~ F(H~’~)is a map, thenh is given locally by u : U cM2 —* ~

k=~~ fk(p)e~k0, where~ E tI”, f ~ = ~ If we considerh
holomorphicand full we can imitate the Eells-Woodconstructionin our case,
and it seemthat4.1. Theoremremainstrue in this case.

Now associatedto each Eells-Wood map 0 = (h
0 hn - ~) : M

2 -* F(n),

we have ~ :M2 ~FQ~”~ givenby: ~(p)= k50 hk(p)e~k0 + k~n

Clearly ~,1i= (h
0, . . - , h,, — , , 1, 1, . . - ) is harmonicwith respectto the Killing

form metric on ~ since 0 harmonicimplies [Ah1,h1] = 0 i = 0 n —

furthermore [Al, 11 is clarly zero. Furthermore,we can seethat the maps 0
are harmonicwith respectto all invariantmetricsdefinedon §3. See [18] or [21]
for more details. From now on we identify 0 and iji and call i~i a Eells-Wood
map. In §7 we will seethat the projection of these maps on ~2(U(n)) via the

fibration F(n) - . - -÷ FQ~-+ ~l(U(n)) are the Uhlenbeck’smapsfound in [28].
Notice we know that the energyof a map 0 = ~ : M

2 -+ ~ with

the respectto the metric~ =(g~.)is given by:

— f ~ ~ J/g~

— M’ 1,/=0

wherecs,~= >0 and i~=z orf.
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4.2. PROPOSITION. Let 0 = (ll~ : M
2 —* (J”~”’, ga.) be a harmonicmap.

Tile/I

- .,
1(q) =‘~

2L’ )(on(qri =a

~ /.. a~ aq’
= 2Re~~ ~&‘ fl~— H~+ [q~ aj.

Proof.’ We haveseenthat

oE~,= —2 Re j \U
11 .~‘,

Hence:

öq a1~
O~Ea=_2Re~ J aji~[.4~1q]_Hj —II..

/ a~ aq\
—2 Re / ~[a~.q] —a”H. n~. )l’~

therefore

(O
2E)(0~(q))= 2Re~ ~ KahuHj ~ fI~+ [q,a~]. ~)I.P ~. •

‘If,

§5. STABILITY OF HARMONIC MAPS INTO F2~”~

We start this section by proving the following useful and key lemmain our

subsequentdiscussion.

5.1. LEMMA. Let 0 = (ll,)~:M2 ~F~’11 be an Fells-Wood map. Consider
= U.. + e~,if i and / are consecutiveintegersbetween1 and n and =

otherwise. Then I~(q) = I~,,(q) + 4e~ O(A~3)(q) 2 ~ ~

where � e
2are arbit,~ry real numbers such that ~.. = a7 + is bigger

- . -

than zero. We can easily see that b~A~ )(q) = [A”, q] — H~ — Il~It’ilere /1 =

z or z
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Proof We have that if 0 is an Eells-Woodmap then = 0 if i and / arenot
consecutiveintegersbet~’een1 and n or i is bigger thann or / is bigger than

n. Therefore:

= 2 Re a
12(A~

2+ A~) +...

+an(nI)(AZ+Az)+(aI
3+~I)0+0+...]

aq aq
+a H —H +H —H +...+...12 a~ 2 2 az I

aq \ I aq \ aq\
+(a..+e)H.—H.I+]I1.—H.J+... —)V =

“ ~ ‘ öz / I ~ ‘ a~ ‘‘ ‘ a~/ g

=I(~..)(q)+4eIiOC4z)(q)~+...+4eQIO(Az)~.

Now we can use the lemmaabove to analyzethe effect on the index form

if we perturba Kähler metricon FQ~”’.

5.2. THEOREM. Let a = (a.1) be a Kdhler metric on ~ and ~ = (~)be the

metric obtained from a.1 by making i3~= +
6k if i and / are consecutive

integers between1 and n, and j3.~= a
7 otherwise, wheree~ EQ are non-

negativeand 0 :M
2 -+ ~ is a Eells-Woodmap. Then 0 is stable.

Proof We know that tfr is holomOrphicwith respectto the naturalalmost

complex structureon ~ according to Lichnerowicz’s remark we seethat

a is positive semidefinite.If we apply 5.1. Lemmawehave:

= I~(q) + 4�, 0(A~3)(q)2 + , + ~

sinceeI’’’~’ e
1 are>0. Therefore0 is stable. U

Now let 0 = (H1)1 : M
2 —>- FQ~’1~.We say that 0 is full or non-degenerateif

for eachi, thereexistsjsuchthatA” * 0 whereji = z or z. Then:

5.3. THEOREM. Let a = (a
11) be a Kahler metric on FQ~’1~and ~3= (i3~~)a per-

turbation of a given by: = a.1 — ek if i and/ are consecutiveintegersbetween

1 and n, and j3~= a11 otherwise, wherec1,.., EQ are> 0, !3~ = a11 —

6k > 0
and 0 : M2 -+ F9.”1~is an Eells-Woodmap. Then0 is notstable.

Proof According to Lichnerowicz’s remark we know that the index form

of the energy functional has the sameindex form for the s-energywhen the
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metric is Kähler. But g(,, is Kähler, then if q is a holomorphicvariationin the
samealmostcomplex structurethat 0 is holomorphicthen I~)(q) = 0. Hence

if we apply 5.1. Lemmawe have:
I~,. (q) = ,. (q) — ~(A’

3 )(q) 2 4e~ b(A~’1)(q)~ 2

(a,j) —

Since 0 is full we choosea holomorphicvariationq suchthat b(A~3)(q) ~ 0

or , . . ~(A~ “ )(q) � 0. we have that: I~,
1(q) < 0. Hence 0 is not stable.We

canseethat suchholomorphicvariations-alw’ays exist.

5.4. COROLLARY. Let 0 = (Hi), : M
2 -~ FQ~’1~be a full Fells-Woodmap, where

F~’1~is equippedwith theKilling form metric. Then 0 is not stable.

Proof Choose� Ek suchthat jS~,= — Ek = I for any integersi and/.•

Finally, we can visualize the set of invariant metricson FQ~”’~in the following
way:

Set of invariant
metricson F2(”1

/1

The diagram shows that theKãhler metricsaresaddlesin thespaceof invanant

metricson F2t’1~.

§6. HARMONIC MAPS FROM T2 = S’ x S1 INTO FQ~’1~

It is well known the existenceof Yang-Mills connectionsover ~2 x ~2 that

are not instantons. It is also known a close relationship betweenthe theory

of equivariant Yang-Mills connectionsover Riemannianmanifolds of cohomo-

geneity one and the theory of invariant minimal submanifolds of symmetric

spaces.See[301 for moredetails.
In this paragraphwe went to show the similarities of this theory with the

studyof harmonictwo-tori into F~f’1~.
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Considerthe following circle actionon L(U(n)) givenby:

p: S
1 xL(LJ(n))-+L(U(n))

a~e~Tk) -‘ ake~ (k + 0)

Assume further that the set of equivariant harmonic maps:F = ~ E C~

(S’ x ~, F2~”~); 0(e~~8, t) = p(e~i~0)Ø(t) where ~(t) = ~(t)) for

all e’~~ E s’} is nonempty.Note that L(U(n)) actson ~ by conjugation:

L(U(n)) x FQ~’1~—~ FQ~’1~

(A, F)-~AFA~

Let 0 = (llj)j :S1 x 1R-÷FQ~ given by ~(e~’~°, t) = (fl.(0, t)). =

(exp(AO)H
1(t))1 = exp(A0). ~(t) where H,~sare projection operators and

A E L(u(n)). Notethat ll.(0, t) = exp(A0)H1(t)exp(—A0).

Considera local chartU~ IR~for a RiemannsurfaceM
2 andB,, B

2 in L(u(n))

suchthat[B1.B2] = 0 that is [B, (e’~~), B2(e~~°)]= 0foranye’~
1°ES1.

Thenwe candefinelocally the following map:

L(U(n))

(x, y)-+ exp(B,x+B
2y)

We see that 4 induces a map 0 = (H.). : U -+ ~ by: H, = 4~’=
exp(B1x + B2y) E. - exp(— B1x — B2y) where E. = (ak) wherea.,. = 1 and

= 0 if/ ‘~ k.
Let us now compute the secondfundamentalforms of ~, namely: =

a”A~’, ~ = a”A~, a’
1> 0. Wehave:

an
1

a”A~ =a”H1 — = a”H1{B, exp(B1x +B2y)E1 .exp(B,x—B2y)

—exp(B,x +B2y)E,.B1 exp(_B,x—B2y)}.

But sinceB1 -B2 B2 .B we have

a”A~ = a~= a
1’ {exp(B,x + B

2y)E1 exp(— B1x — B2y)-

- (B1 exp(B,x + B2y)E. exp(—B1x — B2y) — exp(B,x + B2y)

E,.B1exp(—B, x — B2y)} = a’
1exp(B, x + B

2y)E1.B1 E,. exp(— B1x — B2y).

Now we cancomputethe Euler-Lagrangeequationsfor suchmapsc
1.
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6.2. LEMMA. Let 0 = (Hi) : U ~ M
2 —~ (F~”~,g~ij be a smoothmapsuch that

il~= exp(B,x + B, y)E
1 exp~—B, x -- B, y) where B,, B2 ~ L(u(n) and

[B1. B,] = 0. Then 0 is harmonic if’ and only if ~. a”E~(IB,- diagB, 1 +

[B,. diag B2 ])E. = 0 where diag (B.) denotestile diagonalpart of B1 i = 1, 2.

Proof According to 3.2 Proposition0 is harmonicif and only if — (d~)+

a a ax
+ — (d~)= 0. Hencelet us compute — (da.) + — (d~ . Wehave

ax ~ a, ~

a
(d~)=a”B1 eXp(B,x+B,y)E.B,E~exp(--B1x B~.v)

dx - I j -

-a’
1 exp(B,x+B,y)L’

1B,E1B1 expL-B,x B,y)=

=exp(B1x+B,y) B,, ~ a”L’.B1E1 exp -- B1x -B,y=

i�i

exp(B,x +B,y)a”E1 [diagB,, B, ]E1 exp(-- B1x B,y

Similarly we prove that:

a
— (d~,)=exp(B,x+B,y)a”E1[diagB,,B,]E1exp(—B,x B2j’~
a3

a a
Therefore — (~1a)+ — (d’~)= 0 if andonly if

ax x ay -~‘

~ a”E1([B, ,diagB, ] + [B,.diagB., ])L, = 0.

i�f

6.3. THEOREM. Let 0 = (Hi),. : aZe~Z = T
2 (FQt’1~, ~Ja=(ai!)~ be an equi-

variant map like in 6.1. Lemma, where H~= exp(B,x+ B,y)E. exp(— B, x B,y)

and B,, B, E L(u(n)) with [B,, B
2 I = 0. Furthermore,assumeFIBk~j~ 0 for

some 1 ~ i ~ 1 ~ m, k = 1 or 2 and that ~. a”E1([B1 diagB, I -f

i�J

[B, , diag B2 ])E, = 0. Then 0 is harmonic with respect to the metric ~‘a (a’))

but is not holomorphic with respect to any almost complex structure on FQ~”
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Proof According to our hypothesisand 6.2. Propositionwe have that ~ is

harmonic. On the other hand,A~= A~+ v”~iA,~and A’~= A~+~TT~

are bothnon-zeroas we haveseen.So accordingto the holomorphicmap equa-
tions in § 3 0 is not holomorphicwith respectto any almostcomplexstructure

onFQ~’1~. U

Now let us studyf: IR —~L(U(n)) wheref(t) = exp(B°t) whereB° :S
1 -÷ U(n)

is the constantfunction B° (exp( V’~”i0)) = B, for any exp(V’~’i0) E S~

where

0 a~ 0 0 ... 0...

0 0 0 ... 0...

0 0 0 ~

0 0 13~ 0 ... 0...

B= . Eu(n)n>4

0...

anda,(3 are non-zerorealnumbers.
Then

cosat 0 0 0 ... 0...

0 cosat 0 0 ... 0...

0 0 cos~3t 0 ... 0...

0 0 0 cos(3t .. 0
f(t) = exp(B°t)= : : : :

0 0 0 0 ... 0...
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0 sinc~t ii 0 ... 0...

5mw 0 0 0 ... 0...

0 0 0 sinf3t... 0...

+v’~Ti 0 0 sinI3t 0 .. 0...

Let us consideras the first set of examplesthe case B = B2 = B. where

x and~3are non-zerorealnumbers.

Now let us consider~= JR
2 -~ L(U(n))

(x,y)-*exp(Bx+By)

Then~ inducesa map:

JR2
- -* EQ ~ given by
2H 211

— z~—z

2fl 211
x + — n, y + — .~ ~(x, y)(E

1,.~,E) ~*(x y)

exp(B(x + y))(L exp(— B(x + v))
But diag B = 0. so 6.3. Theoremsays that ~ is harmonicwith respectto any

invariant metric on FQ~’~but is not holomorphic with respectto any almost
complexstructureon ~ sinceE1 BE2 = E,BE1 = cx~/~i~0.

More generallywe could takeanyB of the form

o a~V’Ti 0 0 ... o . 0 0

0 0 0 ... 0 ... 0 .. 0...
o o 0a2~... 0 ... 0 0~.

o 0 0 ... 0 ... 0 ... 0...

B— 0 ... 0 ~ 0...
— 0 0 0 0 ...ak~.. 0 0

0 0 0 0 0 0 0...
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suchthat 2k ~ n.

Another family of harmonic maps with respectto any invariant metric on
FQ~’1

1is given by taking:

0 a~ 0 0 ... 0

0 0 ... 0

0 0 0

0 0 (3~ 0 ...0

~

and

0 0 0 .. 0

(3v~’I 0 0 0 ... 0

0 0 0

0 0 a~ 0 ... 0

B, =

0 0 0 0 00...

wherea, f3 are non-zeroreal numberssuchthat a/(3 E Q. ThenB,, B
2 E L(u(n)),

[B,, B2] = 0 and furthermorethereexists-y E JR suchthat a - ‘y and 13 - y are

integers.
JR

2
Now let us consider ~ : ~— -~FQ~’1~givenby ~(x + 2H7n,y + 2Hym) =

211’y(zDZ)
E~)~*(x,y)=exp(B,x+B

2y)(E,,..., E~)exp(—B1x—B2y).

But diag (B,) = diag (B2) = 0. Then again using 4.3. Theorem we see that ~ is
harmonic with respect to all invariant metrics defined on § 2 but not holomor-
phicsinceE,B,E2=E2B,E, =aV’~i�0.

We can generalizethis exampleby taking B, E u(n) of the following form:



356 CAIOJ.C. NIGREIROS

B~ 0 ... 0... 0

0 B’.,

B, = ..

0 0...B~

0 0...0...0

where

0 ~.~/Ti 0 0

0 o o
B’ =

0 0 0 (3.~

0 0 p~vTTi 0

B~ 0 0 0 0

0 ~. 0 0 0

B, 0 0 B~ 0 0

0 0 0 ~

0 0 0 0 0

where

0 (31\/~T 0 ü

(3.v~ 0 0 0
B~=

- 0 0 0 ~

0 0 ci~/Tj U

such that 2k ~ n. Furthermore,we also assumea1 /13~ . . . = are all

rational numbers.

§7. HARMONIC MAPS INTO LOOP GROUPS

The articles of Atiyah [3] and Donaldson[1 2] suggesta possibleconnection

betweenharmonic 2-spheresinto Loop groups and Yang-Mills connectionsover
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S
4. The articles [7, 15, 28 and 30] suggesta possibleway of approachingthese

questionswhich we will follow in this paragraph.

Let us recall the mapsfound by Uhlenbeckin [28]. If -y :S~ —~ U(n) is a closed

geódeiic,i.e. -y(t) = exp(t~)where~E u(n) andexp(2irE) = I.

We canconsiderthe following actionof U(n) ontoF = Hom(S’, U(n))

U(n) x F -÷ F

(g, ‘y) —+

If we fix yE F, then a U(n) - orbit of y is of the following form: U(n) y =

Ad(G)~/HwhereH = g E U(n); g~g ‘ = E
Now we define the following embeddingof U(n)/H into ~2(U(n)) namely:

U(n)
-*H(U(n))

H

gH~gyq’

If we put on U(n)/H the metric and the almost complex structure induced

by this natural embeddinginto ~1(U(n)) we see that is holomorphic and
totally geodesic.See[22] for moredetailsanda proofof this fact.

Not let us consider

0 0

0 xvTi a
2

0 0 - 0

0 0 -

~

exp(t~)= expO~,±V~i)E
1 + - . - + exp(X~±\/~i)E~ =

Zx,E +. .. +.. .+zxnE~

Now let

[I. :M
2 —~-H(U(n))

p -+ ~ZX1 11
1(g)(p)= ~ZXig(p) E1g(p)*

where g : M
2 - U(n) and 0 = (H,...., H) :M2 ~F(n) = U(n)/T are the

Eells-Woodmaps.
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Clearly eachEells-Wood map 0 = (II H ) : -~ 1-)ii) determinesa

n1ap~=Ko0:M
2~11(U(n))where~(p= \ ZXigtp)E

1g(p)*.

Now we recallthe following basicfact:

7.1 .PROPOSITIONSSupposethat

M—~N

p fl is a commutativediagram, wherepandHareRiemanniansubmersions

P—~—+Q

with dO(T(M/’ c T(N)’
1 where T(M)~’ = ker(dp(x))’. .4ssumethat one of

thefollowing conditionsis satisfIed

(a) dO(T(M)) ~ T(.V)~’

(b) H has totally geodesicfibres

(c) for all F, p 1(z) —~ 11 1(0(z)) is a Riemannianfibration wit/i minin,aIfibres.

The,i H a 0 is harmonic if and only if r(0) is vertical (where r(0) is called

the tensionfield of 0. and‘r( 0) = 0 if and only if 0 is harmonic).

Proof See[14].

We havestudiedin §5 and §6 somespecialexamplesof harmonicmapsfrom

M2 to FQ1~~.Now we connect our study of harmonicmaps into periodic flag

manifolds with harmonic maps into Loop groups by using the Grassmannian

model of Loop groupsas in [24].
Now considering the fibration F(n) . . . —~ /~‘Q(tI) -~ &2(U(n)) we know that

the Fells-Wood maps 0 : M2 -+ ~ are horizontal with respect to H. that

is dO(T(M)) C T(FQ~”)H Furthermorefor each0. ~(0)= 0 since0 is harmonic.

Hence H a 0 : M -* ~‘2(U(n))define new harmonic mapswhich we call Uhien-

beck’s maps.
We imagine that by using Uhienbeck’smaps we can see that the set of inva-

riant metrics on ~2(L’in)) has also the same saddle phenomenonthat we have
provedin § 6 for a preciseset of invariantmetrics on FQt~~).

In fact by using O’Neill’s techniquesand the formula for the second varia-

tion of the energy we can seethat part of theaboveconjectureis true.

Let M and .%‘ smoothmanifolds and fl : M —* N he a smooth map suchthat
H 1(p) is a smooth k-dimensional submanifold of M for all p EN. Let

v = 11 1(P)q i.e. the tangentspaceto fl 1(p) at q E fl 1(p). Assumethat

M and N have Riemannianmetrics and set H = I’. H and U are called the
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horizontal and vertical subspaces,respectively,and we use H and V as super-
scrits to denotehorizontal and vertical components.H is called a Riemannian

submersionif dH H is an isometry. If X E X(N), then there exists a unique
X’E X(M) suchthatdH(X) = X andXE H.

If KM. KN denotethe sectionalcurvaturesof M and N, respectivelythen we

havethe following well-knownresult due to O’Neill.

3
7.2. THEOREM. K (X, Y) = K (X, Y) + —~ [~, Y]v 112

N M

Proof See [15]. U

On the other hand, if 0 :M -*N is harmonicthen:

(~/a~aq\ /aq aq\ ~0
‘(q)= )~—~—)+(.~,——)-KN ~‘ q -KN

Now we use the expression above in the case that 0 : M -~ N is harmonic

map.H : N -~ P is Riemanniansubmersion,H o : M -~ P is harmonic and ‘P ‘is

horizontalwith respectto H. Thenwehave:

( a~2 a~2: a

~ + __-~ _Kp(dflodiji __.~) —

a2(Ho 0)
—K~ ay2 ,q

()a~2 a~2 a~
+-~-— —KN ).q1cN(~.q Vg=Ik(q)

whereq is a horizontalvariation.

If we specializeto the casethat we are interestedin thisnote we have:M= M2
L(U(n))

is any onented compact Riemann surface, N = ~ T P = &2(U(n))
L(U(n)) and ‘P : M2 -‘ ~ is a Eells-Woodmap.We haveH : ~ - ~(U(n))

is a Riemannian submersion and ‘P is horizontal with respect to H. So if q is
a horizontal variation, jno ~ (q) ~ jk (q). Summarizing the results above we have:

7.3. THEOREM. Let a = (a’1) be a metric on ~ such that the harmonicmap

‘P : M2 -+ (FQ~”~,q~) is not stable. Then the Uhienbeck map H o ‘P : -+
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(~2(U(n)).~
1a= (a1!) is also not stable.

Proof Takeq any horizontalvariationsuchthat I~~jf)(q)< 0. Then1~,/~,(q)~

< 0. thereforeH a ‘P is not stable.We can picturethe whole situationas:

Setof invariant
metricson ~MU(n))

)
Kil~~~hler

We conjecturethat the actualsituation is describedby the following picture.

Setof invariant
metricson

/2~hler~ //)
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